Rosalind

Alternative name: Also known as: S/1986 U 4

Moon
Physical Properties
Mean Radius
36km
Equatorial Radius
0km
Polar Radius
0km
Mass
2.50e+16 kg
Volume
Density
1g/cm³
Gravity
0m/s²
Escape Velocity
0m/s
Flattening
0
Average Temperature
0.0 K (-273.1 °C)
Axial Tilt
0°
Semimajor Axis
69,900km
Perihelion
0km
Aphelion
0km
Eccentricity
0
Inclination
0.28°
Sidereal Orbit
0.00 hours
Sidereal Rotation
0 seconds
Mean Anomaly
0°
Argument of Periapsis
0°
Longitude of Ascending Node
0°

Overview of Rosalind

Rosalind is a fascinating moon in our Solar System that has captured the attention of astronomers and space enthusiasts alike. With a Rosalind radius of 36 km, making it 177.0× smaller than Earth's size, this celestial body presents unique characteristics that distinguish it from other objects in our cosmic neighborhood. Positioned at an average distance of 69,900 km (0.000 AU) from the Sun, Rosalind occupies a significant place in the Solar System's architecture. As a moon, Rosalind demonstrates the incredible diversity of natural satellites that orbit larger celestial bodies throughout our Solar System.

Physical Characteristics

The Rosalind physical characteristics reveal a world of remarkable dimensions and properties. The Rosalind radius measures 36 km, making it 177.0× smaller than Earth's size. The Rosalind mass of 2.50e+16 kg represents 238880000.0× smaller than Earth's mass, giving this world substantial gravitational influence.

Orbital Properties

The Rosalind orbit reveals fascinating details about its journey around the Sun and its relationship to other Solar System objects. The Rosalind orbit has a semimajor axis of 69,900 km (0.000 AU), placing it 2140.2× smaller than Earth's distance from the Sun. The Rosalind orbit is nearly circular with an eccentricity of 0 (167.0× smaller than Earth's orbital eccentricity), resulting in relatively stable solar heating throughout its year. The Rosalind orbit takes 0.00 hours to complete (56509238.8× smaller than Earth's orbital period), defining the length of its year. The orbital inclination of 0.28° indicates how much the Rosalind orbit is tilted relative to the Solar System's ecliptic plane. This low inclination means Rosalind follows a path very close to the plane where most planets orbit, suggesting a stable formation history.

Rotation and Tilt

The Rosalind rotation and axial orientation provide crucial insights into its daily and seasonal cycles, as well as its orbital dynamics. The Rosalind axial tilt of 0° determines the intensity and nature of seasonal variations. With minimal axial tilt, Rosalind experiences virtually no seasonal changes, maintaining relatively constant temperatures throughout its year. The orbital orientation parameters reveal additional details about Rosalind's position in space. The mean anomaly of indicates the planet's current position in its orbit relative to its perihelion. The argument of periapsis of shows how the orbit's orientation changes over time due to gravitational perturbations. The longitude of ascending node of defines the reference point where the orbit crosses the ecliptic plane.

Temperature and Atmosphere

The Rosalind temperature and atmospheric conditions are fundamental to understanding its habitability and environmental characteristics. The Rosalind average temperature of 0.0 K (-273.1 °C) (-459.7°F) provides the baseline for understanding its climate. These extremely cold temperatures make Rosalind inhospitable to life as we know it, with any atmosphere likely frozen solid on the surface. Compared to Earth's average temperature of 15°C (59°F), Rosalind presents a dramatically different thermal environment. Being closer to the Sun than Earth, Rosalind receives more intense solar radiation, contributing to its temperature profile.

Escape Velocity & Flattening

The Rosalind escape velocity and shape characteristics reveal important details about its gravitational field and rotational dynamics. The Rosalind escape velocity of 0 m/s determines how easily objects can break free from its gravitational pull. This relatively low escape velocity means that gases and light molecules can easily escape into space, making it difficult for Rosalind to retain a substantial atmosphere. The Rosalind flattening of 0.0000% indicates how much the planet's rotation affects its shape. This minimal flattening suggests a nearly spherical shape, indicating either slow rotation or a very rigid internal structure.

FAQs About Rosalind

How big is Rosalind compared to Earth?

Rosalind has a radius of 36 km, making it 177.0× smaller than Earth's size. In terms of volume, Rosalind is 0.0× the size of Earth. This size difference significantly impacts the planet's gravity, atmospheric retention, geological processes, and overall planetary characteristics.

How far is Rosalind from the Sun?

Rosalind orbits at an average distance of 69,900 km (0.000 AU) from the Sun, placing it 2140.2× smaller than Earth's distance from the Sun. This distance determines the amount of solar radiation the planet receives and significantly influences its temperature and climate.

How long is a year on Rosalind?

A year on Rosalind lasts 0.00 hours (56509238.8× smaller than Earth's orbital period). This orbital period defines the length of the planet's year and affects seasonal patterns, temperature variations, and the overall climate cycle.

What is Rosalind made of?

Rosalind has a density of 1 g/cm³ (5.5× smaller than Earth's density). This density provides important clues about the planet's internal composition. The low density indicates a composition dominated by lighter elements, characteristic of gas giants or icy bodies.

Does Rosalind have seasons?

Rosalind has an axial tilt of . With minimal axial tilt, the planet experiences virtually no seasonal changes, maintaining relatively constant temperatures throughout its year.
Discovery Information
Discovered By
Stephen P. Synnott
Discovery Date
13/01/1986
Raw Data
Orbits AroundParent Body