Remus

Alternative name: Also known as: S/2004 (87) 1

Moon
Physical Properties
Mean Radius
7km
Equatorial Radius
0km
Polar Radius
0km
Mass
2.00e+14 kg
Volume
Density
1g/cm³
Gravity
0m/s²
Escape Velocity
0m/s
Flattening
0
Average Temperature
0.0 K (-273.1 °C)
Axial Tilt
0°
Semimajor Axis
706km
Perihelion
0km
Aphelion
0km
Eccentricity
0.016
Inclination
2°
Sidereal Orbit
0.00 hours
Sidereal Rotation
0 seconds
Mean Anomaly
0°
Argument of Periapsis
0°
Longitude of Ascending Node
0°

Overview of Remus

Remus is a fascinating moon in our Solar System that has captured the attention of astronomers and space enthusiasts alike. With a Remus radius of 7 km, making it 910.1× smaller than Earth's size, this celestial body presents unique characteristics that distinguish it from other objects in our cosmic neighborhood. Positioned at an average distance of 706 km (0.000 AU) from the Sun, Remus occupies a significant place in the Solar System's architecture. As a moon, Remus demonstrates the incredible diversity of natural satellites that orbit larger celestial bodies throughout our Solar System.

Physical Characteristics

The Remus physical characteristics reveal a world of remarkable dimensions and properties. The Remus radius measures 7 km, making it 910.1× smaller than Earth's size. The Remus mass of 2.00e+14 kg represents 29860000000.0× smaller than Earth's mass, giving this world substantial gravitational influence.

Orbital Properties

The Remus orbit reveals fascinating details about its journey around the Sun and its relationship to other Solar System objects. The Remus orbit has a semimajor axis of 706 km (0.000 AU), placing it 211895.2× smaller than Earth's distance from the Sun. The Remus orbit is nearly circular with an eccentricity of 0.016 (1.0× smaller than Earth's orbital eccentricity), resulting in relatively stable solar heating throughout its year. The Remus orbit takes 0.00 hours to complete (23035145.6× smaller than Earth's orbital period), defining the length of its year. The orbital inclination of indicates how much the Remus orbit is tilted relative to the Solar System's ecliptic plane. This low inclination means Remus follows a path very close to the plane where most planets orbit, suggesting a stable formation history.

Rotation and Tilt

The Remus rotation and axial orientation provide crucial insights into its daily and seasonal cycles, as well as its orbital dynamics. The Remus axial tilt of 0° determines the intensity and nature of seasonal variations. With minimal axial tilt, Remus experiences virtually no seasonal changes, maintaining relatively constant temperatures throughout its year. The orbital orientation parameters reveal additional details about Remus's position in space. The mean anomaly of indicates the planet's current position in its orbit relative to its perihelion. The argument of periapsis of shows how the orbit's orientation changes over time due to gravitational perturbations. The longitude of ascending node of defines the reference point where the orbit crosses the ecliptic plane.

Temperature and Atmosphere

The Remus temperature and atmospheric conditions are fundamental to understanding its habitability and environmental characteristics. The Remus average temperature of 0.0 K (-273.1 °C) (-459.7°F) provides the baseline for understanding its climate. These extremely cold temperatures make Remus inhospitable to life as we know it, with any atmosphere likely frozen solid on the surface. Compared to Earth's average temperature of 15°C (59°F), Remus presents a dramatically different thermal environment. Being closer to the Sun than Earth, Remus receives more intense solar radiation, contributing to its temperature profile.

Escape Velocity & Flattening

The Remus escape velocity and shape characteristics reveal important details about its gravitational field and rotational dynamics. The Remus escape velocity of 0 m/s determines how easily objects can break free from its gravitational pull. This relatively low escape velocity means that gases and light molecules can easily escape into space, making it difficult for Remus to retain a substantial atmosphere. The Remus flattening of 0.0000% indicates how much the planet's rotation affects its shape. This minimal flattening suggests a nearly spherical shape, indicating either slow rotation or a very rigid internal structure.

FAQs About Remus

How big is Remus compared to Earth?

Remus has a radius of 7 km, making it 910.1× smaller than Earth's size. In terms of volume, Remus is 0.0× the size of Earth. This size difference significantly impacts the planet's gravity, atmospheric retention, geological processes, and overall planetary characteristics.

How far is Remus from the Sun?

Remus orbits at an average distance of 706 km (0.000 AU) from the Sun, placing it 211895.2× smaller than Earth's distance from the Sun. This distance determines the amount of solar radiation the planet receives and significantly influences its temperature and climate.

How long is a year on Remus?

A year on Remus lasts 0.00 hours (23035145.6× smaller than Earth's orbital period). This orbital period defines the length of the planet's year and affects seasonal patterns, temperature variations, and the overall climate cycle.

What is Remus made of?

Remus has a density of 1 g/cm³ (5.5× smaller than Earth's density). This density provides important clues about the planet's internal composition. The low density indicates a composition dominated by lighter elements, characteristic of gas giants or icy bodies.

Does Remus have seasons?

Remus has an axial tilt of . With minimal axial tilt, the planet experiences virtually no seasonal changes, maintaining relatively constant temperatures throughout its year.
Discovery Information
Discovered By
Franck Marchis, Pascal Descamps, Daniel Hestroffer, Jérome Berthier
Discovery Date
09/08/2005
Raw Data
Orbits AroundParent Body